Modeling and simulation of grinding processes based on a virtual wheel model and microscopic interaction analysis
نویسنده
چکیده
Grinding is a complex material removal process with a large number of parameters influencing each other. In the process, the grinding wheel surface contacts the workpiece at high speed and under high pressure. The complexity of the process lies in the multiple microscopic interaction modes in the wheel-workpiece contact zone, including cutting, plowing, sliding, chip/workpiece friction, chip/bond friction, and bond/workpiece friction. Any subtle changes of the microscopic modes could result in a dramatic variation in the process. To capture the minute microscopic changes in the process and acquire better understanding of the mechanism, a physics-based model is necessary to quantify the microscopic interactions, through which the process output can be correlated with the input parameters. In the dissertation, the grinding process is regarded as an integration of all microscopic interactions, and a methodology is established for the physics based modeling. To determine the engagement condition for all micro-modes quantitatively, a virtual grinding wheel model is developed based on wheel fabrication procedure analysis and a kinematics simulation is conducted according to the operational parameters of the grinding process. A Finite Element Analysis (FEA) is carried out to study the single grain cutting under different conditions to characterize and quantify the grain-workpiece interface. Given the engagement condition on each individual grain with the workpiece from the physics-based simulation, the force, chip generation, and material plastic flow can be determined through the simulation results. Therefore, the microscopic output on each discrete point in the wheel-workpiece contact zone can be derived, and the grinding process technical output is the integrated product of all microscopic interaction output. From the perspective of process prediction and optimization, the simulation can provide the output value including the tangential force and surface texture. In terms of the microscopic analysis for mechanism study, the simulation is able to estimate the number of cutting and III plowing grains, cutting and plowing force, probability of loading occurrence, which can be used as evidence for process diagnosis and improvement. A series of experiments are carried out to verify the simulation results. The simulation results are consistent with the experimental results in terms of the tangential force and surface roughness R a for dry grinding of hardened D2 steel. The methodology enables the description of the " inside story " in grinding processes from a microscopic point of view, which also helps explain and predict the time dependent behavior in grinding. Furthermore, the process …
منابع مشابه
Study on Experimental and Modeling of Rotary Roll Dressing of Grinding Wheels
Two of the important parameters in grinding operation are surface roughness of the workpiece and the amount of consumed energy. These parameters are strongly affected by the condition of grinding wheel surface which is dependent on the dressing parameters. Predicting the roughness of the grinding wheel surface after dressing with known dressing parameters can improve the grinding process. Resea...
متن کاملStudy on the Virtual Wheel and Grinding Process
In this paper the modeling method of object entity in the environment of virtual is introduced and the three-dimensional simulation model of grinding wheel is established in Visual C++ programming language and OpenGL tool. The simulated experiment is made, which can indicate the effect of different parameters to grinding process. It proved the reliability and practicability of virtual wheel thr...
متن کاملAnalytical Approach to Vibration Analysis Of the Wheel-rail contact
Wheel/rail contact simulation is one of the most complicated problems in the modeling of railway vehicles. The wheel/rail interaction plays a unique role in rail vehicle dynamics. In this paper, the dynamic response of the wheel on irregular rail track is analyzed with analytical approach using the method of Multiple Scales (MMS). The Hertzian contact theory is used to obtain the relationshi...
متن کاملSimulation of Pedestrian Dynamics with Macroscopic and Microscopic Mathematical Models
Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in the volume of public transport and the need for its reasonable, efficient planning have made the description and modeling of transport and pedestrian behaviors as important research topics in the past twenty years. First, we present a macroscopic model for the pedestrian flow based on continuum mec...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کامل